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Abstract
The dissipative dynamics of a classical parametric oscillator is studied
analytically. For a generic functional form of the parametric driving, a
simplified description of the system is obtained by performing a sequence
of transformations set up from the deterministic Floquet solutions. In the
high-frequency regime, the application of an averaging method leads to the
description of the secular dynamics as an effective bidimensional Ornstein–
Uhlenbeck process. The expressions obtained for the probability density and
the correlation functions allow us to unravel the mechanisms responsible for
the nontrivial dependence of the variances on the driving amplitude.

PACS number: 05.40.−a

The parametric oscillator, i.e., the harmonic oscillator with a periodic time-dependent
frequency, is a fundamental model, which has played an important role in the study of diverse
physical problems [1–8]. Extensive theoretical and experimental research on these systems has
had important conceptual and practical implications. Indeed, multiple generalizations of the
basic model, set up to describe increasingly complex systems, have allowed the analysis of the
combined effect of parametric oscillations and other dynamical aspects such as nonlinearity,
additional driving or dissipation (i.e., friction and noise in a classical regime or coupling to
a reservoir in a quantum treatment). These studies, relevant to systems such as ions and
electrons in traps [2–5], signals generated in electronic circuits [6] or cavity modes of the
electromagnetic field [7], have uncovered a variety of dynamical behaviour, which, depending
on the parameters, can show diverse fundamental effects. In particular, it is known that, in
the regime of parametric resonance, both quantum and classical models can present squeezing
[7, 8], i.e., a reduction in the fluctuations of one of the coordinates at the expense of an increase
in the conjugate variance. The practical use of this property has led to significant advances in
the implementation of noise reduction schemes [7, 8].

Recently, new results of conceptual and practical interest have been reported on this
subject. For a trapped charged microparticle, modelled as a Brownian classical oscillator
sinusoidally driven in frequency, experimental [2] and theoretical [1] research, carried out
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far from the parametric-resonance condition, has revealed a nontrivial dependence of the
asymptotic variances on the driving amplitude. It has been found that, in certain ranges
of parameters, as the amplitude grows, the position variance presents an initial reduction
followed by a monotonic increase; whereas, the velocity variance increases monotonically.
Remarkably, the magnitude of this effect, which can be termed classical quadrature squeezing,
depends on the damping constant. It has also been found that the correlation functions present
damped oscillations with a frequency that depends in a complex way on the driving and friction
coefficients.

Our study focuses on these features and aims at unravelling the mechanisms responsible
for them. In particular, we intend to investigate their possible general character. To this end,
we leave the restrictions of sinusoidal driving and white noise, present in previous studies, and
consider a generic periodic driving and a broadband noise. Then, working in a high-frequency
regime, analytical expressions for the variances and correlation functions are obtained. In this
framework, we give an understanding of some aspects of the peculiar stochastic dynamics,
tracing them back to general properties of the deterministic system. Then, to illustrate our
conclusions, the sinusoidal case is considered and some of the results of [1, 2] are recovered.
Our methodology has two main sources. First, the changes of variables that lead to our
simplified description are the classical counterparts of the unitary transformations presented
in [3] (see also [4] for an alternative treatment) and applied in [5] to study the quantum
dynamics of similar systems. Second, the coarse graining that allows analytical results to be
obtained is based on the methods developed by Stratonovich to the averaging of stochastic
processes [6].

We consider a time-dependent oscillator perturbed by a linear frictional force and an
additive noise term. Specifically, we study the system defined by

q̈ + k(t)q = −γ q̇ + (γD)1/2 ξ(t) (1)

with k(t) = k(t + τ ). For a sinusoidal form of the driving field, namely, for k(t) =
ω2

0 + b cos(t), where  ≡ 2π/τ ; and, in the case of ξ(t) being Gaussian white noise,
equation (1) corresponds to the system studied in [1, 2].

We start by analysing the Hamiltonian dynamics, described by q̈ + k(t)q = 0. This
equation, which for a sinusoidal form of k(t) is known as the Mathieu equation, has been
extensively studied [9, 10]. Let us summarize here some of its well-known properties for
a generic periodic driving. The Floquet theorem states that this second-order differential
equation with periodic coefficients has solutions of the form f (t) = eiµtφ(t), where φ(t) has
the same periodicity as the coefficients, i.e., φ(t + τ ) = φ(t), and f (t) is bounded (stable) or
unbounded (unstable) depending on the character, real or complex, of the Floquet exponentµ.
As we are interested in a confined system, our study will be restricted to the functional forms
of k(t) that, irrespective of the initial conditions, lead to bounded solutions, which correspond
to µ/ having a real noninteger value. In this case, the motion is quasiperiodic; f (t) and
its complex conjugate f ∗(t) form a pair of linearly independent solutions and, therefore, a
basis to describe the dynamics. The stability and functional structure of f (t) are not affected
by a change in the phase of the driving, which, in fact, implies only a change in the time
origin. Hence, without loss of generality, we continue our study assuming a phase equal to
zero. Later on, the case of having the phase uniformly distributed between 0 and 2π , which
can be relevant to experimental realizations of the model, will be considered.

Now we turn to the complete system. Given our interest in discussing the possible
generality of the nontrivial stochastic features, we apply a methodology that will allow the
analytical study to be completed without specifying the time dependence of k(t). Parallelling
the sequence of unitary transformations introduced in [3] to obtain the quasieigenstates of the
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quantum Hamiltonian counterpart,a simplified description of the complete system is built up by
taking the following steps. (i) We make the change of variablesQ= q/|f |, P = |f |(p−2χq),
where p = q̇ and χ ≡ (ḟ f ∗ + ḟ ∗f )/(4|f |2). Note that a scale transformation is included
in this first step and that |f | and χ are both strictly periodic functions. (ii) We introduce the
complex variable α, defined by the relation α = √

W/2Q + i
√

1/2WP . α and its complex
conjugate α∗ are, respectively, the analogues of the annihilation and creation operators of
the quantum study. W , which is given by the Wronskian of the two linearly independent
quasiperiodic solutions as 2iW = ḟ f ∗ −f ḟ ∗, is time independent; additionally, it is assumed
that W > 0 [3]. The resulting equation for α reads

α̇ = −i
W

|f |2α − γ

(
1

2
(α − α∗) + i

χ |f |2
W

(α + α∗)
)

+ i
|f |√
2W

√
γDξ(t). (2)

No approximations have been made up to this point. A necessary and sufficient condition
for the validity of the applied treatment is the requirement of bounded motion for the
Hamiltonian system. There are no additional restrictions on the specific time dependence
of k(t). Moreover, our method is valid irrespective of the spectral properties of the random
force.

Despite its apparent complex structure, equation (2) provides a framework for
implementing the averaging process in a straightforward way. Indeed, as the explicit time
dependence of the parametric driving has been transferred to the terms that depend on χ

and/or |f |, equation (2) corresponds to a Brownian harmonic oscillator with parameters
modulated by the driving frequency and its harmonics. Therefore, if the magnitude of these
parameters is much smaller than , the driving period gives the smallest time scale in the
problem and an average over τ (〈· · ·〉τ ) can be applied to account for the secular dynamics,
which is consequently described in terms of a Brownian harmonic oscillator with effective
time-independent parameters. Since the magnitude of the effective frequency is given by the
Floquet exponent µ, the range of parameters where the coarse graining is valid is defined by
µ, γ, γ/µ, γD/µ 
 ; additionally, a sufficiently small correlation time tc is required for
the noise, specifically, tc 
 1/µ, [6, 11, 12]. These conditions define the high-frequency
regime that will be assumed in the rest of our paper. In this regime, the averaging of both the
deterministic part and the random terms in equation (2) is readily carried out. In particular,
in the case of Gaussian white noise, i.e., for 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = 2δ(t − t ′), the
application of standard averaging methods (see [6], vol II, p 97) allows us to describe the
secular evolution of the variables Q and P as

Q̇ =
〈

1

|f |2
〉
τ

P

(3)

Ṗ = −
(
W 2

〈
1

|f |2
〉
τ

+ 2γ 〈χ |f |2〉τ
)
Q − γP + ζ(t)

which correspond to a bidimensional Ornstein–Uhlenbeck process [13], where the effective
noise term is characterized by 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t ′)〉 = 2〈|f |2〉τ γDδ(t − t ′). Note that
the simple form obtained for the moments of this averaged stochastic force is due to the
white-noise character assumed for ξ(t). If, instead, a broadband coloured noise is considered,
the corresponding spectral density taken at  and at its harmonics appears explicitly in the
coarse graining and determines the effective noise strength [6, 11, 12]. As the structure of
the equations does not change when a finite correlation time is assumed, we conclude that the
presence of broadband fluctuations does not qualitatively alter the dynamics. The robustness
of the results of [1, 2] against variations in the noise correlation time is one of the findings of
the present paper.
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Before proceeding with our study, let us clarify some points of the previous derivation.
First, note that, following [6], we use the term broadband noise to refer to fluctuations with
correlation time much smaller than any other relevant time scale present in the emergent
averaged system. Hence, our methodology cannot be applied to equations which include
memory terms or fluctuations with diverging correlation times. Second, we emphasize the
importance in our treatment of the transformations that lead to equation (2): they allow the
application of the averaging process as they incorporate part of the effect of the driving field
into the secular dynamics and transfer the explicit time dependence to the perturbative terms.
The application of a coarse graining directly on equation (1) would imply working at a lower
order of approximation; the validity of this procedure in a regime of very high frequency will
be discussed later on. Third, the applicability of our scheme to quantum analogues has been
emphasized by using a notation that reflects the existence of a parallellism with the quantum
treatment. Indeed, from our results, some relevant features of the quantum dynamics can be
predicted: the change in the main frequency, which is relevant to the precise definition of
resonance, and the presence of squeezing far from the well-characterized regime of parametric
resonance.

The ‘stationary’ probability density for the bidimensional Ornstein–Uhlenbeck process
of equation (3) is readily obtained as [13]

wst(Q,P ) =
〈

1

|f |2
〉
τ

ωef

2πDef
exp

[
−1

2

〈1/|f |2〉2
τ

Def
P 2 − 1

2

ω2
ef

Def
Q2

]
(4)

where the effective values of the frequency and diffusion constant are, respectively,

ω2
ef =

〈
1

|f |2
〉
τ

[
W 2

〈
1

|f |2
〉
τ

+ 2γ 〈χ |f |2〉τ
]

(5)

Def = D〈|f |2〉τ
(〈1/|f |2〉τ

)2
. (6)

The variances in the initial variables q and p can be obtained from the variances in Q and
P by reversing the sequence of transformations. If one assumes that the phase of the external
field is uniformly distributed, which is applicable to experimental realizations of the system
where there is no possibility of fixing the phase, the consequent averaging over the driving
period τ leads finally to the averaged asymptotic variances

〈
σ as
qq

〉
τ

= η2 D

ω2
ef

(7)

〈
σ as
pp

〉
τ

= D + 4η〈χ2|f |2〉τ 〈1/|f |2〉τ D

ω2
ef

(8)

〈
σ as
qp

〉
τ

= 2η〈χ |f |2〉τ 〈1/|f |2〉τ D

ω2
ef

(9)

where η = 〈|f |2〉τ 〈1/|f |2〉τ . As a proof of consistency, we remark that, in this scheme, the
results for the undriven case are recovered by taking η = 1 and χ(t) = 0; in particular, the
crossed variance vanishes.

Let us discuss how our approach, although valid only in a particular range of parameters,
gives insight into the general mechanisms underlying the stochastic dynamics. The functions
|f (t)|, W and χ(t), encapsulate all the characteristics of the deterministic system which are
relevant to the noisy process. In particular, some of their properties, which we summarize in the
following, give the clues to understanding the emergence of squeezing. First, the quasiperiodic
character assumed for the deterministic motion implies the departure of |f (t)| from a constant
value, and, in turn, the departure of η from 1. Second, W and, consequently, ωef , depends
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strongly on the Floquet exponent; moreover, this exponent gives a good approximation for
the secular frequency near a purely periodic regime. Third, χ , which can be rewritten as
Re (φφ̇∗)/(2|φ|2), is completely determined by the coefficients of the harmonics of  that
contribute to f (t); therefore it conveys information on the specific time features of the
quasiperiodic trajectories. We emphasize that our scheme makes it clear how the change
in the secular frequency and the quasiperiodic character of the solutions are rooted in the
presence of the driving term. Note that it is precisely the time dependence of φ that reflects
the quasiperiodicity of the Floquet solutions f (t) (see the discussion of the limit of very high
frequency that we present further on).

Applying these general arguments to the analysis of our results, some aspects of the
stochastic dynamics are clarified. (a) The changes in the variances are differently rooted.
Whereas for η � 1, a mere change in the Floquet coefficient modifies ωef , and, therefore,
alters

〈
σ as
qq

〉
τ
, a nonzero 〈χ2|f |2〉τ is needed, in the same regime, to vary the velocity variance.

Furthermore, as the enhancement of
〈
σ as
pp

〉
τ

depends on φ̇ and η, it becomes smaller as a
periodic deterministic range is approached. (b) The dependence of W on µ along with the
changes in η inside the stability region, can explain the qualitatively different behaviours
detected in the position variance as the driving amplitude is increased. (c) Our results reflect
also the shift caused by γ in the effective frequency (see equation (5)), and, consequently, in
the variances, which is one of the main findings of [1]. We conjecture that, under conditions
less restrictive than the ones in our study, in particular, for larger values of γ , the friction-
increased stability of the solutions for the complete deterministic system (i.e., the system of
equation (1) without the noise term), and the consequent dependence of the Floquet exponents
on γ [1], can account for the importance of this cooperative action of friction and driving.

The correlation functions for our approximate system are straightforwardly obtained [13].
For instance, the averaged autocorrelation function of the position variable has the form

〈〈q(t)q(t ′)〉〉τ = 〈|f (t)||f (t ′)|〉τ Def

ω2
ef

λ1 e−λ2(t
′−t) − λ2 e−λ1(t

′−t)

λ1 − λ2
(10)

where 〈〈· · ·〉〉τ denotes a double average, statistical and over the driving period; λ1,2 =
1
2

[
γ ± (

γ 2 − 4ω2
ef

)1/2
]
, and t ′ � t . Note that the asymptotic variance is consistently

recovered for t = t ′. This derivation clearly shows that the damped oscillations of the
correlation functions, detected in the numerical study of the sinusoidal-driving case [1], are
rooted in the Ornstein–Uhlenbeck characteristics of the secular dynamics. The robust character
of these features is also evident, as we are still considering a generic functional form for the
driving. Moreover, despite its restricted validity, the above expression allows us to guess
the relevance of the relative magnitudes of γ and ωef to the appearance, in other regimes, of
qualitatively different behaviours.

To illustrate the applicability of our methodology, let us consider a parametric driving
with the functional form k(t) = ω2

0 + b cos(t), which corresponds to the case studied in [1]
and [2]. The solutions of the Mathieu equation, which describe in this case the deterministic
dynamics, are given in [10]. For small values of the amplitude, it is shown that, in first
order in b/2 and in the limit ω2

0/
2 
 1, the following approximations can be made:

µ2 � ω2
0 + b2/(22), W � µ and χ(t) � −(b/(2|f |2)) sin(t). The effective frequency

of the system is therefore ωef = µ and the averaged asymptotic variances are
〈
σ as
qq

〉
τ

� D

ω2
ef

� D

ω2
0

− D

2ω4
0

2
b2 (11)

〈
σ as
pp

〉
τ

� D +
D

2ω2
0

2
b2 (12)
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〈
σ as
qp

〉
τ

= 0. (13)

For the chosen values of the amplitude b there is no effect of γ on ωef . As b increases, ωef

becomes larger and the position variance diminishes, whereas the velocity variance increases.
These results completely agree with those presented in [1, 2] for the same range of parameters.
Despite the differences between the approaches used, the same functional dependence and
numerical factors are found. In particular, in the limit ω0 → 0, which is the case studied
in [2], we find ωef ∼ b2/(22), and, therefore,

〈
σ as
qq

〉
τ

� 2D2/b2. Of course one cannot
observe here the increase and ultimate divergence of

〈
σ as
qq

〉
τ

detected in [1] for larger driving
amplitudes. Nevertheless, from the understanding given by our approach, one can reasonably
conjecture that the change in the stability of the deterministic solutions must be crucial for the
appearance of those effects. Also, it is observed that, in the considered regime of bounded
deterministic motion and small friction, the correlation functions present, in agreement with
the findings of [1], exponentially damped oscillations; the exponent is γ /2; the frequency,
given by 1

2

(
4ω2

ef − γ 2
)1/2

, shows a dependence on the driving and damping parameters that
reflects the changes in the periodicity detected numerically [1].

From the above picture one dynamical feature stands out: in the undriven case, because of
the thermal equilibrium condition, the variances of the normalized variables take their thermal
values, i.e., ω2

0σ
as
qq = D and σ as

pp = D (D = kBT ); the external field, which drives the system
out of equilibrium, changes them in a nontrivial way. In particular, it beats the thermal limit for〈
σ as
qq

〉
τ
, as we have found, mainly because of an increase in the effective frequency. We stress

that, since the product of the averaged variances retains, in our first-order approximation, its
standard value, ω2

0

〈
σ as
qq

〉
τ

〈
σ as
pp

〉
τ

= D2 +O(b2/4), we can term the behaviour found classical
quadrature squeezing [8] and consider the present model system, because of its simplicity, as
a suitable scenario for implementing an effective noise reduction. An additional remark is
in order: instead of the exponential reduction of the variance achieved in standard squeezing
schemes, in our system, the reduction is quadratic in the field amplitude.

Finally, let us briefly present some results valid in the regime of very high frequency, as
they clarify our findings. In this limit, the Kapitsa–Landau method [11, 14] can be applied,
and, neglecting the high-frequency oscillations from the periodic secular motion, the system,
which is always stable, is equivalent to an oscillator with a larger effective frequency, namely,
ω2

ef � ω2
0 + b2/(22). Hence, the position variance decreases monotonically with the driving

amplitude, without experiencing any subsequent increase. This result gives plausibility to our
previous conjecture on the link between a change in the stability of the system and the increase
in the position variance. Moreover, the velocity variance does not change in this limit, which
is also explained in our framework: as in this case the solutions are strictly periodic, φ(t)
takes a constant value, then, χ(t) = 0, and, consequently (see equation (8)),

〈
σ as
pp

〉
τ

= D.
It is worth making some final remarks. First, our analytical results for the Brownian

parametric oscillator identify the deterministic roots of the reduction and the enhancement
induced in the variances by the driving field. Indeed, they reveal the generality of these effects
and how the magnitude of the changes depends on functions entirely given by the deterministic
Floquet solutions. As a consequence, the possibility of designing strategies of control is open.
Second, for the particular case of sinusoidal driving we have linked the decrease in

〈
σ as
qq

〉
τ

as the driving amplitude grows, with the increase in the effective frequency of the oscillator,
detected in our description. Furthermore, the expression obtained for ωef explains the changes
in the periodicity of the correlation function [1]. Third, the dependence of

〈
σ as
pp

〉
τ

on the
driving amplitude, which is not explained by an increase in the effective frequency, has its
origin also in the deterministic dynamics: in this case it is the function χ2(t), which contains
information on the particular time features of the Floquet solutions, that gives the magnitude
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of this effect. Finally, we remark on the potential practical implications of the study, given the
robust character of the effects analysed and the generality of the model system considered.
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